Bayesian Generalised Ensemble Markov Chain Monte Carlo

نویسندگان

  • Jes Frellsen
  • Ole Winther
  • Zoubin Ghahramani
  • Jesper Ferkinghoff-Borg
چکیده

Bayesian generalised ensemble (BayesGE) is a new method that addresses two major drawbacks of standard Markov chain Monte Carlo algorithms for inference in highdimensional probability models: inapplicability to estimate the partition function and poor mixing properties. BayesGE uses a Bayesian approach to iteratively update the belief about the density of states (distribution of the log likelihood under the prior) for the model, with the dual purpose of enhancing the sampling efficiency and making the estimation of the partition function tractable. We benchmark BayesGE on Ising and Potts systems and show that it compares favourably to existing state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalised linear mixed model analysis via sequential Monte Carlo sampling

We present a sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chain Monte Carlo (MCMC). The Sequential Monte Carlo sampler (SMC) is a new and general...

متن کامل

Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation

Although Monte Carlo methods have frequently been applied with success, indiscriminate use of Markov chain Monte Carlo leads to unsatisfactory performances in numerous applications. We present a generalised version of the Gibbs sampler that is based on conditional moves along the traces of groups of transformations in the sample space. We explore its connection with the multigrid Monte Carlo me...

متن کامل

Model - Averaged ` 1 Regularization using Markov Chain Monte Carlo Model Composition

This paper studies combining `1 regularization and Markov chain Monte Carlo model composition techniques for Bayesian model averaging (BMA). The main idea is to resolve the model uncertainty issues arising from path point selection by treating the `1 regularization path as a model space for BMA. The method is developed for linear and logistic regression, and applied to sample classification in ...

متن کامل

Bayesian Generalized Kernel Models

We propose a fully Bayesian approach for generalized kernel models (GKMs), which are extensions of generalized linear models in the feature space induced by a reproducing kernel. We place a mixture of a point-mass distribution and Silverman’s g-prior on the regression vector of GKMs. This mixture prior allows a fraction of the regression vector to be zero. Thus, it serves for sparse modeling an...

متن کامل

A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation

Rodent hippocampal population codes represent important spatial information about the environment during navigation. Several computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. Here we extend our previous work and propose a nonparametric Bayesian approach to infer rat hippocampal population co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016